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3.1 Let Mn be a smooth manifold and let (x1, . . . , xn) a local system of coordinates around p ∈ M.
Let also S ∈ ⊗kTpM ⊗l T ∗

pM be a tensor of type (k, l) at p and let Si1i2...ik
j1j2...jl

be its
corresponding components. We will de�ne the contraction tr(S) to be the tensor

tr(S) = Sαi2...ik
αj2...jl

∂

∂xi2
⊗ · · · ⊗ ∂

∂xik
⊗ dxj2 ⊗ · · · ⊗ dxjl ,

i.e. the components of tr(S) in the (x1, . . . , xn) coordinates are simply the components of S
after summing over the �rst covariant and contravariant indices. Show that tr(S) is well-
de�ned independently of the choice of coordinate system, i.e. show that if (y1, . . . , yn) is a
di�erent coordinate system around p and S̃i1i2...ik

j1j2...jl
are the components of S with respect

to these coordinates, then

Sαi2...ik
αj2...jl

∂

∂xi2
⊗ · · · ⊗ ∂

∂xik
⊗ dxj2 ⊗ · · · ⊗ dxjl

= S̃αi2...ik
αj2...jl

∂

∂yi2
⊗ · · · ⊗ ∂

∂yik
⊗ dyj2 ⊗ · · · ⊗ dyjl .

Remark. In the case when S is of type (1, 1), and hence can be viewed as a linear map
S : TpM → TpM, tr(S) is simply the trace of the matrix representation of S; in that case,
the statement of the above exercise reduces to the well-known fact that the trace of a linear
automorphism is independent of the choice of basis of vectors.

Solution. Let Si1...ik
j1...jl

and S̃i1...ik
j1...jl

be the components of S in the (x1, . . . , xn) and (y1, . . . , yn)
coordinate systems, respectively. The two sets of coordinate tangent vectors and cotangent vectors
are related by

∂

∂yi
=
∂xa

∂yi
and dyi =

∂yi

∂xa
dxa,

while the relation between the two sets of components for S is given by the usual transformation law
for tensors, i.e.

S̃i1...ik
j1...jl

= Sa1...ak
b1...bl

∂yi1

∂xa1
. . .

∂yik

∂xak
∂xb1

∂yj1
. . .

∂xbl

∂yjl
. (1)

In the above, ∂yi

∂xa denotes the Jacobian matrix of y = (y1, . . . , yn) as a function of x = (x1, . . . , x1)
(see the 1st Exercise Series), while ∂xa

∂yi
denotes the Jacobian of the inverse function x = x(y). Recall

that, for any di�eomorphism Φ : Ω ⊂ R
n → Ω′ ⊂ R

n, the Jacobian matrix
[
D(Φ−1)

]
of the inverse

function Φ−1 satis�es: [
D(Φ−1)

](
Φ(z)

)
=

[
D(Φ−1)

]−1
(z) for all z ∈ Ω.

Therefore, as we've seen in class, the matrices
[
∂yi

∂xa

]
and

[
∂xa

∂yi

]
evaluated at the same point p in the

common domain of de�nition of the coordinate charts (x1, . . . , xn) and (y1, . . . , yn) are the inverse of
one another, i.e.

∂yi

∂xa
· ∂x

a

∂yj
= δij and

∂xa

∂yi
· ∂y

i

∂xb
= δab . (2)
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In order for the contraction tr(S) to be well-de�ned independently of the coordinate system, we
need to show that

Sαi2...ik
αj2...jl

∂

∂xi2
⊗ · · · ⊗ ∂

∂xik
⊗ dxi2 ⊗ · · · ⊗ dxil

= S̃αi2...ik
αj2...jl

∂

∂yi2
⊗ · · · ⊗ ∂

∂yik
⊗ dyi2 ⊗ · · · ⊗ dyil ,

which is the same as saying that the components of tr(S) transform under changes of coordinates
like a tensor of type (k − 1, l − 1), i.e.:

tr(S̃)i2...ikj2...jl = tr(S̃)a2...akb2...bl
∂yi2

∂xa2
. . .

∂yik

∂xak
∂xb2

∂yj2
. . .

∂xbl

∂yjl
. (3)

In order to show (3), we will calculate tr(S̃) using the formula (1):

tr(S̃)i2...ikj2...jl = S̃αi2...ik
αj2...jl

= Sa1...ak
b1b2...bl

∂yα

∂xa1
· ∂y

i2

∂xa2
. . .

∂yik

∂xak
· ∂x

b1

∂yα
· ∂x

b2

∂yj2
. . .

∂xbl

∂yjl

= Sa1a2...ak
b1b2...bl

( ∂yα
∂xa1

· ∂x
b1

∂yα

)
· ∂y

i2

∂xa2
. . .

∂yik

∂xak
· ∂x

b2

∂yj2
. . .

∂xbl

∂yjl

(2)
= Sa1a2...ak

b1b2...bl
· δb1a1 ·

∂yi2

∂xa2
. . .

∂yik

∂xak
· ∂x

b2

∂yj2
. . .

∂xbl

∂yjl

= Sαa2...ak
αb2...bl

· ∂y
i2

∂xa2
. . .

∂yik

∂xak
· ∂x

b2

∂yj2
. . .

∂xbl

∂yjl

= tr(S)a2...akb2...bl
∂yi2

∂xa2
. . .

∂yik

∂xak
∂xb2

∂yj2
. . .

∂xbl

∂yjl
,

i.e. (3) holds.

3.2 Let M be a smooth manifold of dimension n. In this exercise, we will prove that the tangent
bundle TM = ∪p∈MTpM naturally admits the structure of a manifold of dimension 2n.

Let {Uα, ϕα : Uα → R
n}α be a smooth atlas on M. For any pair (Uα, ϕα) in this atlas, let

(x1, . . . , xn) be the associated system of coordinates; we can de�ne a map

ϕ̃α : TUα = ∪p∈UαTpM → ϕα(Uα)× R
n

as follows:
ϕ̃α(p, v) = (ϕ(p); dx1(v), . . . , dxn(v)).

We will equip TM with the topology that makes all these maps homeomorphisms, i.e.:

V ⊂ TM is open i� ϕ̃α

(
V ∩ TUα

)
⊂ R

n × R
n is open for all α.

(a) Show that TM equipped with the above topology is Hausdor� and second countable.
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(b) Show that {(TUα, ϕ̃α)}α constitutes a smooth atlas on TM.

(c) Show that the base projection map π : TM → M (which acts by π : TpM → p) is smooth.
Moreover, for any smooth vector �eld X ∈ Γ(TM), show that the map X : M → TM
(sending any p ∈ M to Xp ∈ TpM) is a smooth immersion.

Solution. (a) In order to show that TM with the given topology is Hausdor�, we just have to
verify that, for any two points p1, p2 ∈ M and tangent vectors v1 ∈ Tp1M, v2 ∈ Tp2M such that
(p1, v1) ̸= (p2, v2), there exist two disjoint open neighborhoods of (p1, v1) and (p2, v2) in TM. We
will consider two cases:

� If p1 ̸= p2, then there exist open neighborhoods U1 and U2 in M of p1 and p2, respectively,
such that U1∩U2 = ∅ (since, by our de�nition, a manifold M has the Hausdor� property). Let
ϕ1 : U ′

1 → R
n, ϕ2 : U ′

2 → R
n be coordinate charts such that p1 ∈ U ′

1 and p2 ∈ U ′
2. Then the sets

V1,V2 ⊂ TM de�ned by

Vi = ϕ̃−1
i

(
ϕi(Ui ∩ U ′

i)× R
n
)
=

⋃
q∈Ui∩U ′

i

TqM, i = 1, 2,

have the following properties:

1. Vi is open, since ϕi(Ui ∩ U ′
i)× R

n is an open subset of R2n.

2. (pi, vi) ∈ Vi for i = 1, 2, since pi ∈ Ui ∩ U ′
i .

3. V1 ∩ V2 = ∅ since (U1 ∩ U ′
1) ∩ (U2 ∩ U ′

2) ⊆ U1 ∩ U2 = ∅ and, therefore⋃
q∈U1∩U ′

1

TqM∩
⋃

q∈U2∩U ′
2

TqM =
⋃

q∈(U1∩U ′
1)∩(U2∩U ′

2)

TqM = ∅.

� If p1 = p2 = p, then v1 ̸= v2 ∈ TpM. Let ϕ : U → R
n be a coordinate chart on a neighborhood of

p. Let us consifer the points ϕ̃(p, v1) and ϕ̃(p, v2) in ϕ(U)×Rn. Since ϕ̃ is 1-1 and (p, v1) ̸= (p, v2),
we must have ϕ̃(p, v1) ̸= ϕ̃(p, v2). Since ϕ(U) × R

n is a Hausdor� space, there exist open
neighborhoods V1, V2 of ϕ̃(p, v1), ϕ̃(p, v2), respectively, in ϕ(U)×Rn such that V1∩V2 = ∅. The
sets Ui = ϕ̃−1(Vi), i = 1, 2, are then disjoint open neighborhoods of (p, vi) in TM.

In order to show that TM is second countable, we have to exhibit a countable basis for the
topology of TM, i.e. a countable collection BTM = {Vn}n∈N of open subsets of TM with the
property that for every non-empty open set U ⊂ TM and every z ∈ U , there exists a Vn ∈ BTM
such that z ∈ Vn and Vn ⊂ U .

Let BM = {Wk}k∈N be a countable basis for the topology of M (such a basis always exists in
view of our de�nition of a manifold). We can assume without loss of generality that, for each k ∈ N,
Wk is contained in the domain Uα of at least one of the coordinate charts ϕα in our chosen atlas on
M (you can easily check that, by removing from BM the sets Wk which are not entirely contained
inside a single chart, the resulting collection is still a basis for the topology of M). Let us make
an assignment k → α(k) so that Wk ⊂ Uα(k), where {ϕα(k),Uα(k)} is coordinate chart in the chosen
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atlas. Let also BRn = {Ωl}l∈N be a countable basis for the topology of Rn (BRn can be chosen to be,
for instance, the set of all open balls in Rn of rational radius and center with rational coordinates).

The collection
BTM =

{
ϕ̃−1
α(k)

(
ϕα(k)(Wk)× Ωl

)}
(k,l)∈N×N

is a countable basis for the topology of TM:

� Every set ϕ̃−1
α(k)

(
ϕα(k)(Wk) × Ωl

)
⊂ TM is open, since ϕα(k)(Wk) × Ωl is an open subset of

R
n × R

n.

� Let (p, v) be a point in TM and V ⊂ TM an open neighborhood of (p, v). Since BM = {Wk}k∈N
is basis of the topology of M, there exists a k0 ∈ N such that p ∈ Wk0 ; the corresponding
coordinate chart ϕα(k0) then covers the open neighborhood of Wk0 of p. Moreover, our de�nition

of the topology of TM implies that there exists an open set Ṽ ⊂ ϕα(k0)(Wk0) × R
n such that

(p, v) ∈ ϕ̃−1
α(k0)

(Ṽ) and ϕ̃−1
α(k0)

(Ṽ) ⊂ V .

Let Ū ⊂ M and Ω̄ ⊂ R
n be open sets containing p and (dx1(v), . . . , dxn(v)), respectively,

such that
ϕα(k0)(Ū)× Ω̄ ⊂ Ṽ .

Then, since BM and BRn are bases of the corresponding topologies, there exist Wk ∈ BM and
Ωl ∈ BRn such that

p ∈ Wk, ,Wk ⊂ Ū , (dx1(v), . . . , dxn(v)) ∈ Ωl, Ωl ⊂ Ω̄.

Thus, the set ϕ̃−1
α(k0)

(
ϕα(k0)(Wk)× Ωl

)
⊂ TM contains (p, v) and satis�es

ϕ̃−1
α(k0)

(
ϕα(k0)(Wk)× Ωl

)
⊂ ϕ̃−1

α(k0)

(
ϕα(k0)(Ū)× Ω̄

)
⊂ ϕ̃−1

α(k0)
(Ṽ) ⊂ V .

(b) In order to show that
{
(TUα, ϕ̃α)

}
α
constitutes a smooth atlas on TM, we simply have to

verify that the transition maps Φαβ
.
= ϕ̃α ◦ ϕ̃−1

β : ϕβ(Uβ) × R
n → ϕα(Uα) × R

n are smooth. Note

that the coordinate charts ϕ̃α : TUα → R
n × R

n can be reexpressed as follows: For any p ∈ M and
v ∈ TpM,

ϕ̃α(p, v) = (ϕα(p), dϕα|p(v)) ∈ Rn × R
n,

where dϕα|p : TpM → Tϕα(p)R
n ≃ R

n is the di�erential of the map of ϕα. Using the formula for
the derivative of the composition of two maps, we can therefore deduce that the transition map Φαβ

takes the form
Φαβ(z, ω) =

(
ϕα ◦ ϕ−1

β (z), d(ϕα ◦ ϕ−1
β )|z(ω)

)
.

Since ϕα ◦ ϕ−1
β : ϕβ(Uβ) ⊂ R

n → ϕα(Uα) ⊂ R
n is a C∞ di�eomorphism (in view of the fact that

{Uα, ϕα}α is a smooth atlas on M), we infer that Φαβ is a smooth map.

(c) Let (Uα, ϕα) be a coordinate chart on M and let (TUα, ϕ̃α) be the corresponding coordinate
chart on TM as before. If (x1, . . . , xn) are the coordinate functions associated to ϕα on Uα, we will
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denote with (x1, . . . , xn; y1, . . . , yn) the corresponding coordinate functions on TU , so that, for any
(p, v) ∈ TU ,

xi
(
(p, v)

)
= xi(p) and yi

(
(p, v)

)
= dxi|p(v).

In any such pair of coordinate systems on M and TM, the projection map π : TM → M has the
expression

π
(
(x1, . . . , xn; y1, . . . , yn)

)
= (x1, . . . , xn).

Hence, π is a smooth map.
Similarly, if X ∈ Γ(M) has components X i with respect to the basis coordinate vector �elds

{ ∂
∂xj }nj=1, the map X : M → TM de�ned by p → Xp ∈ TpM has the following expression in a pair

of coordinate systems as before:

X
(
(x1, . . . , xn

)
= (x1, . . . , xn; X1(x1, . . . , xn), . . . , Xn(x1, . . . , xn)).

Thus, it can be readily veri�ed that the matrix of the di�erential dX:

[dX] =



1 0 . . . 0
0 1 . . . 0
...

. . .

0 0 . . . 1
∂1X

1 ∂2X
1 . . . ∂nX

1

...
. . .

∂1X
n ∂2X

n . . . ∂nX
n


has full rank, and hence X is an immersion.

3.3 Let X, Y be smooth vector �elds on a smooth manifold M. We de�ne the commutator (or Lie
bracket) [X, Y ] of X and Y to be the linear function [X, Y ] : C∞(M) → C∞(M) de�ned by

[X, Y ](f) = X(Y (f))− Y (X(f)) for all f ∈ C∞(M).

(a) Show that [X, Y ] is a smooth vector �eld on M.

(b) Show that [·, ·] satis�es the following algebraic identities for any X, Y, Z ∈ Γ(M):

1. [X, Y ] = −[Y,X] (anticommutativity).

2. [X, aY + bZ] = a[X, Y ] + b[X,Z] for any constans a, b (R-linearity).

3. [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (Jacobi identity).

(c) Is [·, ·] : Γ(M)× Γ(M) → Γ(M) a (1, 2)-tensor �eld?

Solution. (a) Let us �rst verify that, for every point p ∈ M, the functional [X, Y ]p : C
∞(M) → R,

de�ned by
[X, Y ]p(f) = Xp(Y (f))− Yp(X(f))
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is a tangent vector at p. Since [X, Y ]p is obviously a linear functional, it only remains to verify that
it satis�es the product rule: For any f, h ∈ C∞(M):

[X, Y ]p(f · h) = Xp(Y (f · h))− Yp(X(f · h))
= Xp

(
Y (f) · h+ f · Y (h)

)
− Yp

(
X(f) · h+ f ·X(h)

)
= Xp(Y (f)) · h(p) + Yp(f) ·Xp(h) +Xp(f)Yp(h) + f(p)Xp(Y (h))

− Yp(X(f)) · h(p)−Xp(f) · Yp(h)− Yp(f)Xp(h)− f(p)Yp(X(h))

=
(
Xp(Y (f))− Yp(X(f))

)
· h(p) + f(p) ·

(
Xp(Y (h))− Yp(X(h))

)
,

where, above, we made use of the fact that the functionals X, Y : C∞(M) → C∞(M) and Xp, Yp :
C∞(M) → R satisfy the product rule.

In order for [X, Y ] to be a smooth vector �eld, we have to show that the assigment p→ [X, Y ]p is
smooth; equivalently, we have to prove that the components of [X, Y ] in any local coordinate system
(x1, . . . , xn) on M are smooth. We can readily calculate:

[X, Y ]i = [X, Y ](xi)

= X(Y (xi))− Y (X(xi))

= X
(
Y j ∂x

j

∂xj

)
− Y

(
Xj ∂x

j

∂xj

)
= X(Y i)− Y (X i)

= Xj ∂Y
i

∂xj
− Y j ∂X

i

∂xj
.

Thus, since the components of X, Y are smooth functions, [X, Y ] has smooth components and is,
therefore, a smooth vector �eld.

(b) Identities 1�3 follow easily by using the de�nition of [X, Y ].

(c) The Lie bracket [·, ·] is not tensorial in its arguments. Assuming, for the sake of contradiction,
that it is, then it should be C∞(M) -multilinear in its arguments; that is to say, for any f ∈ C∞(M)
and any X, Y ∈ Γ(M), we should have

[fX, Y ] = f [X, Y ].

However, the above relation is not true: For any h ∈ C∞(M), using the de�nition of [·, ·] we have:

[fX, Y ](h) = fX
(
Y (h)

)
− Y

(
f(X(h)

)
= f

(
X
(
Y (h)

)
−X

(
Y (h)

))
− Y (f)X(h)

= f [X, Y ](h)− Y (f)X(h)

̸= f [X, Y ](h).

Thus, we reach a contradiction.

3.4 Let (M, g) be a smooth Riemannian manifold.
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(a) For any 1-form ω on M, let us consider the vector �eld ω♯ de�ned so that, for any
X ∈ Γ(M):

g(X,ω♯)
.
= ω(X).

Compute the components of ω♯ in any local coordinate chart (x1, . . . , xn).

(b) We will de�ne the gradient of a function f : M → R to be the vector �eld

∇f .
= df ♯.

Compute the gradient of a function f : R2 → R in polar coordinates.

(c) We can naturally construct a positive de�nite and symmetric (2, 0)-tensor g̃ acting as an
inner product on the space of 1-forms by the formula

g̃(ω1, ω2)
.
= g(ω♯

1, ω
♯
2) for all ω1, ω2 ∈ Γ∗(M).

Compute the coe�cients g̃ij of g̃ in any local coordinate system as a function of the
coe�cients of g.

Solution. (a) In any local coordinate chart (x1, . . . , xn), the de�nition of ω♯ takes the form (for any
X ∈ Γ(M)):

gijX
i(ω♯)j = ωiX

i.

Thus, using the above formula for X = ∂
∂xk , k = 1, . . . , n, we infer that

(ω♯)i = gijωj,

where gij are the components of the inverse matrix [g]−1 of [g].

(b) From part (a), we know that, in any local coordinate system (x1, . . . , xn) on a Riemannian
manifold (M, g), the gradient of a function f : M → R takes the form

(∇f)i = gij(df)j = gij
∂f

∂xj
.

In polar coordinates (r, θ) on (R2, gE), since

g = (dr)2 + r2(dθ)2,

the components gij of [g]−1 are

grr = 1, grθ = gθr = 0, gθθ = r−2.

Therefore,

(∇f)r = ∂f

∂r
, , (∇f)θ = 1

r2
∂f

∂θ
.
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3.5 Let Mn be a smooth manifold and ω : Γ(M) → C∞(M) be a C∞(M)-linear functional. We
will show that ω is in fact an 1-form on M, i.e. if Y ∈ Γ(M) then, for all p ∈ M,

(
ω(Y )

)
(p)

depends only on Y |p.

(a) Explain why it su�ces to show that if Y vanishes at p, then
(
ω(Y )

)
(p) = 0.

(b) Let U be an open neighborhood of p covered by a coordinate chart (x1, . . . , xn). Show
that there exists an open neighborhood V of p contained inside U and smooth vector
�elds {Xi}ni=1 on M such that Xi = ∂

∂xi on V . (Hint: Use a suitable cut-o� function

ψ : M → [0,+∞) which is equal to 1 in small a neighborhood of p.)

(c) Show that if Y |p = 0, then there exists a �nite number of vector �elds {Vk}k such that

Y =
∑
k

fkVk,

where the functions fk ∈ C∞(M) satisfy fk(p) = 0. Deduce that ω(Y )(p) = 0.

The same argument should also work for more general C∞(M)-multilinear maps T : Γ∗(M)×
· · · × Γ∗(M)× Γ(M)× · · · × Γ(M) → C∞(M).

Solution. (a) In order to show that
(
ω(Y )

)
(p) depends only on Y |p, we have to show that if

Y1, Y2 ∈ Γ(M) are such so that Y1|p = Y2|p, then
(
ω(Y1)

)
(p) =

(
ω(Y2)

)
(p). Since ω is linear, if

we set X = Y1 − Y2, the previous sentence is equivalent to the statement that if X|p = 0, then(
ω(X)

)
(p) = 0.

(b) Let ϕ : U → R
n be a local coordinate chart de�ned on a neighborhood U of p and let

(x1, . . . , xn) be the associated coordinate functions. Since ϕ(U) is an open subset of Rn, there exists
a radius r > 0 so that the Euclidean ball B3r(ϕ(p)) of radius 3r centered at ϕ(p) is entirely contained
in ϕ(U). Let χ : Rn → R be a smooth function so that

χ ≡ 1 on Br(ϕ(p)) and χ ≡ 0 on Rn \B2r(ϕ(p)).

Let us set Vr = ϕ−1
(
Br(ϕ(p))

)
, V2r = ϕ−1

(
B2r(ϕ(p))

)
and V3r = ϕ−1

(
B3r(ϕ(p))

)
(see Figure 1).

Notice that, since ϕ is a homeomorphism, these are open subsets of M, satisfying

p ∈ Vr ⊂ V2r ⊂ V3r.

Moreover, since clos
(
B2r(ϕ(p))

)
is a compact subset of ϕ(U) (since it is strictly contained inside

B3r(ϕ(p)) ⊂ ϕ(U)) and ϕ−1 : ϕ(U) → U is a homeomorphism, we know that clos
(
B2r(ϕ(p))

)
is a

compact (and, hence, closed) subset of U . Since U is open, this implies in particular that

∂U ∩ clos
(
B2r(ϕ(p))

)
= ∅. (4)

Let us de�ne the function ψ : M → R by the relation

ψ(q) =

{
χ ◦ ϕ(q), if q ∈ U ,
0, if q ∈ M \ U .
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ϕ

ϕ−1

U ϕ(U)
∂U

V3r

V2r

Vr

p ϕ(p)

Br

B2r

B3r

Figure 1: Schematic depiction of the subsets Vr, V2r, V3r ⊂ U and Br(ϕ(p)), B2r(ϕ(p)), B3r(ϕ(p)) ⊂
R
n. Note that the function ψ is supported in V2r and ψ ≡ 1 on Vr.

Note that the support of ψ is contained in the set V2r and ψ ≡ 1 on Vr. We will now show that
ψ is a smooth function on M. The de�nition of ψ implies that it is automatically smooth in the
open sets U and int

(
M \ U

)
; thus, we only have to check its behaviour at ∂U . It will follow that

ψ ∈ C∞(M) if the set Z =
{
q ∈ M : ψ(q) = 0

}
contains an open neighborhood of ∂U . Indeed,

since ψ is supported in V2r, the set Z contains the open set W = M\ clos(V2r) and, in view of (4),

∂U ⊂ W .

Having de�ned the smooth cut-o� function ψ : M → R as above, let us de�ne the vector �elds
Xi (i = 1, . . . , n) on M as follows:

(Xi)|q =

{
ψ(q) ∂

∂xi , if q ∈ U ,
0, if q ∈ M \ U .

The vector �elds Xi are indeed smooth for the same reason that ψ is smooth: They are trivially
smooth on U and int

(
M\U

)
and, since ψ vanishes on an open neighborhood of ∂U , they are equal

to the zero vector �eld in a neighborhood of ∂U (and hence they are also smooth at ∂U). Moreover,
since ψ = 1 on Vr, we have

Xi =
∂

∂xi
on the neighborhood Vr of p.

(c) Let Y ∈ Γ(M) be such that Y |p = 0. Note that, inside the open neighborhood U of p covered
by the coordinates (x1, . . . , xn), we can easily write Y as a sum of vector �elds with coe�cients
vanishing at p, since

Y = Y i ∂

∂xi

and Y 1(p) = · · · = Y n(p) = 0 since Y |p = 0. The challenge is to obtain a similar decomposition
which is valid on the whole of M (where ∂

∂xi is not well de�ned). To this end, we will use the cut-o�
function ψ and the vector �elds Xi from part (b) of the exercise.
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Let us �rst decompose (trivially)

Y = ψ2Y + (1− ψ2)Y. (5)

If Y i are the components of the vector �eld Y in the coordinate system (x1, . . . , xn) on U , then the
vector �eld ψY can be expressed as

ψ(q)Y |q = ψ(q)Y i(q)
∂

∂xi
= Y i(q)Xi|q for all q ∈ U .

Therefore, we have
ψ2(q)Y |q =

(
ψY i

)
(q) ·Xi|q for all q ∈ U . (6)

Notice that, in the above expression, the vector �elds ψ2Y and Xi are de�ned on the whole of
the manifold M, but the functions ψY i are only de�ned on U (covered by the coordinate system
(x1, . . . , xn)). However, for each i = 1, ldots, n, ψY i vanishes in an open neighborhood of ∂U and
hence (as in the case of ψ) it can be extended as a smooth function hi ∈ C∞(M) so that

hi(q) =
{
ψ(q)Y i(q), if q ∈ U , 0, if q ∈ M \ U .

Then, since the vector �eld ψ2Y satis�es (6) on U and vanishes identically on M\ U , we have

ψ2Y = hiXi everywhere on M.

Returning to (5), we have
Y = hiXi + (1− ψ2)Y.

Notice that, on the right hand side, the coe�cient of each vector �eld vanishes at p:

� For i = 1, . . . , n, hi(p) = Y i(p) = 0 since we assumed that Y |p = 0.

� (1− ψ2)(p) = 0 since ψ(p) = 1.

Thus, we succeeded to write

Y =
∑
k

fkVk

for fk ∈ C∞(M) and Vk ∈ Γ(M) such that fk(p) = 0.
In view of our assumption that ω(·) is C∞(M) in its argument, we therefore have:(

ω(Y )
)
(p) =

(
ω
(∑

k

fkVk
))

(p) =
∑
k

fk(p)
(
ω(Vk)

)
(p) = 0.
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