

3.1 Let \mathcal{M}^n be a smooth manifold and let (x^1, \dots, x^n) a local system of coordinates around $p \in \mathcal{M}$. Let also $S \in \otimes^k T_p \mathcal{M} \otimes^l T_p^* \mathcal{M}$ be a tensor of type (k, l) at p and let $S^{i_1 i_2 \dots i_k}_{j_1 j_2 \dots j_l}$ be its corresponding components. We will define the *contraction* $\text{tr}(S)$ to be the tensor

$$\text{tr}(S) = S^{\alpha i_2 \dots i_k}_{\alpha j_2 \dots j_l} \frac{\partial}{\partial x^{i_2}} \otimes \dots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{j_2} \otimes \dots \otimes dx^{j_l},$$

i.e. the components of $\text{tr}(S)$ in the (x^1, \dots, x^n) coordinates are simply the components of S after summing over the first covariant and contravariant indices. Show that $\text{tr}(S)$ is well-defined *independently* of the choice of coordinate system, i.e. show that if (y^1, \dots, y^n) is a different coordinate system around p and $\tilde{S}^{i_1 i_2 \dots i_k}_{j_1 j_2 \dots j_l}$ are the components of S with respect to these coordinates, then

$$\begin{aligned} S^{\alpha i_2 \dots i_k}_{\alpha j_2 \dots j_l} \frac{\partial}{\partial x^{i_2}} \otimes \dots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{j_2} \otimes \dots \otimes dx^{j_l} \\ = \tilde{S}^{\alpha i_2 \dots i_k}_{\alpha j_2 \dots j_l} \frac{\partial}{\partial y^{i_2}} \otimes \dots \otimes \frac{\partial}{\partial y^{i_k}} \otimes dy^{j_2} \otimes \dots \otimes dy^{j_l}. \end{aligned}$$

Remark. In the case when S is of type $(1, 1)$, and hence can be viewed as a linear map $S : T_p \mathcal{M} \rightarrow T_p \mathcal{M}$, $\text{tr}(S)$ is simply the trace of the matrix representation of S ; in that case, the statement of the above exercise reduces to the well-known fact that the trace of a linear automorphism is independent of the choice of basis of vectors.

Solution. Let $S^{i_1 \dots i_k}_{j_1 \dots j_l}$ and $\tilde{S}^{i_1 \dots i_k}_{j_1 \dots j_l}$ be the components of S in the (x^1, \dots, x^n) and (y^1, \dots, y^n) coordinate systems, respectively. The two sets of coordinate tangent vectors and cotangent vectors are related by

$$\frac{\partial}{\partial y^i} = \frac{\partial x^a}{\partial y^i} \quad \text{and} \quad dy^i = \frac{\partial y^i}{\partial x^a} dx^a,$$

while the relation between the two sets of components for S is given by the usual transformation law for tensors, i.e.

$$\tilde{S}^{i_1 \dots i_k}_{j_1 \dots j_l} = S^{a_1 \dots a_k}_{b_1 \dots b_l} \frac{\partial y^{i_1}}{\partial x^{a_1}} \dots \frac{\partial y^{i_k}}{\partial x^{a_k}} \frac{\partial x^{b_1}}{\partial y^{j_1}} \dots \frac{\partial x^{b_l}}{\partial y^{j_l}}. \quad (1)$$

In the above, $\frac{\partial y^i}{\partial x^a}$ denotes the Jacobian matrix of $y = (y^1, \dots, y^n)$ as a function of $x = (x^1, \dots, x^n)$ (see the 1st Exercise Series), while $\frac{\partial x^a}{\partial y^i}$ denotes the Jacobian of the inverse function $x = x(y)$. Recall that, for any diffeomorphism $\Phi : \Omega \subset \mathbb{R}^n \rightarrow \Omega' \subset \mathbb{R}^n$, the Jacobian matrix $[D(\Phi^{-1})]$ of the inverse function Φ^{-1} satisfies:

$$[D(\Phi^{-1})](\Phi(z)) = [D(\Phi^{-1})]^{-1}(z) \quad \text{for all } z \in \Omega.$$

Therefore, as we've seen in class, the matrices $\left[\frac{\partial y^i}{\partial x^a} \right]$ and $\left[\frac{\partial x^a}{\partial y^i} \right]$ evaluated at the same point p in the common domain of definition of the coordinate charts (x^1, \dots, x^n) and (y^1, \dots, y^n) are the inverse of one another, i.e.

$$\frac{\partial y^i}{\partial x^a} \cdot \frac{\partial x^a}{\partial y^j} = \delta_j^i \quad \text{and} \quad \frac{\partial x^a}{\partial y^i} \cdot \frac{\partial y^i}{\partial x^b} = \delta_b^a. \quad (2)$$

In order for the contraction $\text{tr}(S)$ to be well-defined independently of the coordinate system, we need to show that

$$\begin{aligned} S^{\alpha i_2 \dots i_k}_{\alpha j_2 \dots j_l} \frac{\partial}{\partial x^{i_2}} \otimes \dots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{i_2} \otimes \dots \otimes dx^{i_l} \\ = \tilde{S}^{\alpha i_2 \dots i_k}_{\alpha j_2 \dots j_l} \frac{\partial}{\partial y^{i_2}} \otimes \dots \otimes \frac{\partial}{\partial y^{i_k}} \otimes dy^{i_2} \otimes \dots \otimes dy^{i_l}, \end{aligned}$$

which is the same as saying that the components of $\text{tr}(S)$ transform under changes of coordinates like a tensor of type $(k-1, l-1)$, i.e.:

$$\text{tr}(\tilde{S})^{i_2 \dots i_k}_{j_2 \dots j_l} = \text{tr}(\tilde{S})^{a_2 \dots a_k}_{b_2 \dots b_l} \frac{\partial y^{i_2}}{\partial x^{a_2}} \dots \frac{\partial y^{i_k}}{\partial x^{a_k}} \frac{\partial x^{b_2}}{\partial y^{j_2}} \dots \frac{\partial x^{b_l}}{\partial y^{j_l}}. \quad (3)$$

In order to show (3), we will calculate $\text{tr}(\tilde{S})$ using the formula (1):

$$\begin{aligned} \text{tr}(\tilde{S})^{i_2 \dots i_k}_{j_2 \dots j_l} &= \tilde{S}^{\alpha i_2 \dots i_k}_{\alpha j_2 \dots j_l} \\ &= S^{a_1 \dots a_k}_{b_1 b_2 \dots b_l} \frac{\partial y^\alpha}{\partial x^{a_1}} \cdot \frac{\partial y^{i_2}}{\partial x^{a_2}} \dots \frac{\partial y^{i_k}}{\partial x^{a_k}} \cdot \frac{\partial x^{b_1}}{\partial y^{j_2}} \cdot \frac{\partial x^{b_2}}{\partial y^{j_2}} \dots \frac{\partial x^{b_l}}{\partial y^{j_l}} \\ &= S^{a_1 a_2 \dots a_k}_{b_1 b_2 \dots b_l} \left(\frac{\partial y^\alpha}{\partial x^{a_1}} \cdot \frac{\partial x^{b_1}}{\partial y^\alpha} \right) \cdot \frac{\partial y^{i_2}}{\partial x^{a_2}} \dots \frac{\partial y^{i_k}}{\partial x^{a_k}} \cdot \frac{\partial x^{b_2}}{\partial y^{j_2}} \dots \frac{\partial x^{b_l}}{\partial y^{j_l}} \\ &\stackrel{(2)}{=} S^{a_1 a_2 \dots a_k}_{b_1 b_2 \dots b_l} \cdot \delta^{b_1}_{a_1} \cdot \frac{\partial y^{i_2}}{\partial x^{a_2}} \dots \frac{\partial y^{i_k}}{\partial x^{a_k}} \cdot \frac{\partial x^{b_2}}{\partial y^{j_2}} \dots \frac{\partial x^{b_l}}{\partial y^{j_l}} \\ &= S^{\alpha a_2 \dots a_k}_{\alpha b_2 \dots b_l} \cdot \frac{\partial y^{i_2}}{\partial x^{a_2}} \dots \frac{\partial y^{i_k}}{\partial x^{a_k}} \cdot \frac{\partial x^{b_2}}{\partial y^{j_2}} \dots \frac{\partial x^{b_l}}{\partial y^{j_l}} \\ &= \text{tr}(S)^{a_2 \dots a_k}_{b_2 \dots b_l} \frac{\partial y^{i_2}}{\partial x^{a_2}} \dots \frac{\partial y^{i_k}}{\partial x^{a_k}} \frac{\partial x^{b_2}}{\partial y^{j_2}} \dots \frac{\partial x^{b_l}}{\partial y^{j_l}}, \end{aligned}$$

i.e. (3) holds.

3.2 Let \mathcal{M} be a smooth manifold of dimension n . In this exercise, we will prove that the tangent bundle $T\mathcal{M} = \bigcup_{p \in \mathcal{M}} T_p \mathcal{M}$ naturally admits the structure of a manifold of dimension $2n$.

Let $\{\mathcal{U}_\alpha, \phi_\alpha : \mathcal{U}_\alpha \rightarrow \mathbb{R}^n\}_\alpha$ be a smooth atlas on \mathcal{M} . For any pair $(\mathcal{U}_\alpha, \phi_\alpha)$ in this atlas, let (x^1, \dots, x^n) be the associated system of coordinates; we can define a map

$$\tilde{\phi}_\alpha : T\mathcal{U}_\alpha = \bigcup_{p \in \mathcal{U}_\alpha} T_p \mathcal{M} \rightarrow \phi_\alpha(\mathcal{U}_\alpha) \times \mathbb{R}^n$$

as follows:

$$\tilde{\phi}_\alpha(p, v) = (\phi_\alpha(p); dx^1(v), \dots, dx^n(v)).$$

We will equip $T\mathcal{M}$ with the topology that makes all these maps homeomorphisms, i.e.:

$$\mathcal{V} \subset T\mathcal{M} \text{ is open iff } \tilde{\phi}_\alpha(\mathcal{V} \cap T\mathcal{U}_\alpha) \subset \mathbb{R}^n \times \mathbb{R}^n \text{ is open for all } \alpha.$$

(a) Show that $T\mathcal{M}$ equipped with the above topology is *Hausdorff* and *second countable*.

(b) Show that $\{(T\mathcal{U}_\alpha, \tilde{\phi}_\alpha)\}_\alpha$ constitutes a *smooth* atlas on $T\mathcal{M}$.

(c) Show that the base projection map $\pi : T\mathcal{M} \rightarrow \mathcal{M}$ (which acts by $\pi : T_p\mathcal{M} \rightarrow p$) is smooth. Moreover, for any smooth vector field $X \in \Gamma(T\mathcal{M})$, show that the map $X : \mathcal{M} \rightarrow T\mathcal{M}$ (sending any $p \in \mathcal{M}$ to $X_p \in T_p\mathcal{M}$) is a smooth *immersion*.

Solution. (a) In order to show that $T\mathcal{M}$ with the given topology is Hausdorff, we just have to verify that, for any two points $p_1, p_2 \in \mathcal{M}$ and tangent vectors $v_1 \in T_{p_1}\mathcal{M}$, $v_2 \in T_{p_2}\mathcal{M}$ such that $(p_1, v_1) \neq (p_2, v_2)$, there exist two disjoint open neighborhoods of (p_1, v_1) and (p_2, v_2) in $T\mathcal{M}$. We will consider two cases:

- If $p_1 \neq p_2$, then there exist open neighborhoods \mathcal{U}_1 and \mathcal{U}_2 in \mathcal{M} of p_1 and p_2 , respectively, such that $\mathcal{U}_1 \cap \mathcal{U}_2 = \emptyset$ (since, by our definition, a manifold \mathcal{M} has the Hausdorff property). Let $\phi_1 : \mathcal{U}'_1 \rightarrow \mathbb{R}^n$, $\phi_2 : \mathcal{U}'_2 \rightarrow \mathbb{R}^n$ be coordinate charts such that $p_1 \in \mathcal{U}'_1$ and $p_2 \in \mathcal{U}'_2$. Then the sets $\mathcal{V}_1, \mathcal{V}_2 \subset T\mathcal{M}$ defined by

$$\mathcal{V}_i = \tilde{\phi}_i^{-1}(\phi_i(\mathcal{U}_i \cap \mathcal{U}'_i) \times \mathbb{R}^n) = \bigcup_{q \in \mathcal{U}_i \cap \mathcal{U}'_i} T_q\mathcal{M}, \quad i = 1, 2,$$

have the following properties:

1. \mathcal{V}_i is open, since $\phi_i(\mathcal{U}_i \cap \mathcal{U}'_i) \times \mathbb{R}^n$ is an open subset of \mathbb{R}^{2n} .
2. $(p_i, v_i) \in \mathcal{V}_i$ for $i = 1, 2$, since $p_i \in \mathcal{U}_i \cap \mathcal{U}'_i$.
3. $\mathcal{V}_1 \cap \mathcal{V}_2 = \emptyset$ since $(\mathcal{U}_1 \cap \mathcal{U}'_1) \cap (\mathcal{U}_2 \cap \mathcal{U}'_2) \subseteq \mathcal{U}_1 \cap \mathcal{U}_2 = \emptyset$ and, therefore

$$\bigcup_{q \in \mathcal{U}_1 \cap \mathcal{U}'_1} T_q\mathcal{M} \cap \bigcup_{q \in \mathcal{U}_2 \cap \mathcal{U}'_2} T_q\mathcal{M} = \bigcup_{q \in (\mathcal{U}_1 \cap \mathcal{U}'_1) \cap (\mathcal{U}_2 \cap \mathcal{U}'_2)} T_q\mathcal{M} = \emptyset.$$

- If $p_1 = p_2 = p$, then $v_1 \neq v_2 \in T_p\mathcal{M}$. Let $\phi : \mathcal{U} \rightarrow \mathbb{R}^n$ be a coordinate chart on a neighborhood of p . Let us consider the points $\tilde{\phi}(p, v_1)$ and $\tilde{\phi}(p, v_2)$ in $\phi(\mathcal{U}) \times \mathbb{R}^n$. Since $\tilde{\phi}$ is 1-1 and $(p, v_1) \neq (p, v_2)$, we must have $\tilde{\phi}(p, v_1) \neq \tilde{\phi}(p, v_2)$. Since $\phi(\mathcal{U}) \times \mathbb{R}^n$ is a Hausdorff space, there exist open neighborhoods $\mathcal{V}_1, \mathcal{V}_2$ of $\tilde{\phi}(p, v_1), \tilde{\phi}(p, v_2)$, respectively, in $\phi(\mathcal{U}) \times \mathbb{R}^n$ such that $\mathcal{V}_1 \cap \mathcal{V}_2 = \emptyset$. The sets $\mathcal{U}_i = \tilde{\phi}^{-1}(\mathcal{V}_i)$, $i = 1, 2$, are then disjoint open neighborhoods of (p, v_i) in $T\mathcal{M}$.

In order to show that $T\mathcal{M}$ is second countable, we have to exhibit a countable *basis* for the topology of $T\mathcal{M}$, i.e. a countable collection $\mathcal{B}_{T\mathcal{M}} = \{\mathcal{V}_n\}_{n \in \mathbb{N}}$ of open subsets of $T\mathcal{M}$ with the property that for every non-empty open set $\mathcal{U} \subset T\mathcal{M}$ and every $z \in \mathcal{U}$, there exists a $\mathcal{V}_n \in \mathcal{B}_{T\mathcal{M}}$ such that $z \in \mathcal{V}_n$ and $\mathcal{V}_n \subset \mathcal{U}$.

Let $\mathcal{B}_{\mathcal{M}} = \{\mathcal{W}_k\}_{k \in \mathbb{N}}$ be a countable basis for the topology of \mathcal{M} (such a basis always exists in view of our definition of a manifold). We can assume without loss of generality that, for each $k \in \mathbb{N}$, \mathcal{W}_k is contained in the domain \mathcal{U}_α of at least one of the coordinate charts ϕ_α in our chosen atlas on \mathcal{M} (you can easily check that, by removing from $\mathcal{B}_{\mathcal{M}}$ the sets \mathcal{W}_k which are not entirely contained inside a single chart, the resulting collection is still a basis for the topology of \mathcal{M}). Let us make an assignment $k \rightarrow \alpha(k)$ so that $\mathcal{W}_k \subset \mathcal{U}_{\alpha(k)}$, where $\{\phi_{\alpha(k)}, \mathcal{U}_{\alpha(k)}\}$ is coordinate chart in the chosen

atlas. Let also $\mathcal{B}_{\mathbb{R}^n} = \{\Omega_l\}_{l \in \mathbb{N}}$ be a countable basis for the topology of \mathbb{R}^n ($\mathcal{B}_{\mathbb{R}^n}$ can be chosen to be, for instance, the set of all open balls in \mathbb{R}^n of rational radius and center with rational coordinates).

The collection

$$\mathcal{B}_{T\mathcal{M}} = \{\tilde{\phi}_{\alpha(k)}^{-1}(\phi_{\alpha(k)}(\mathcal{W}_k) \times \Omega_l)\}_{(k,l) \in \mathbb{N} \times \mathbb{N}}$$

is a countable basis for the topology of $T\mathcal{M}$:

- Every set $\tilde{\phi}_{\alpha(k)}^{-1}(\phi_{\alpha(k)}(\mathcal{W}_k) \times \Omega_l) \subset T\mathcal{M}$ is open, since $\phi_{\alpha(k)}(\mathcal{W}_k) \times \Omega_l$ is an open subset of $\mathbb{R}^n \times \mathbb{R}^n$.
- Let (p, v) be a point in $T\mathcal{M}$ and $\mathcal{V} \subset T\mathcal{M}$ an open neighborhood of (p, v) . Since $\mathcal{B}_{\mathcal{M}} = \{\mathcal{W}_k\}_{k \in \mathbb{N}}$ is basis of the topology of \mathcal{M} , there exists a $k_0 \in \mathbb{N}$ such that $p \in \mathcal{W}_{k_0}$; the corresponding coordinate chart $\phi_{\alpha(k_0)}$ then covers the open neighborhood of \mathcal{W}_{k_0} of p . Moreover, our definition of the topology of $T\mathcal{M}$ implies that there exists an open set $\tilde{\mathcal{V}} \subset \phi_{\alpha(k_0)}(\mathcal{W}_{k_0}) \times \mathbb{R}^n$ such that $(p, v) \in \tilde{\phi}_{\alpha(k_0)}^{-1}(\tilde{\mathcal{V}})$ and $\tilde{\phi}_{\alpha(k_0)}^{-1}(\tilde{\mathcal{V}}) \subset \mathcal{V}$.

Let $\bar{\mathcal{U}} \subset \mathcal{M}$ and $\bar{\Omega} \subset \mathbb{R}^n$ be open sets containing p and $(dx^1(v), \dots, dx^n(v))$, respectively, such that

$$\phi_{\alpha(k_0)}(\bar{\mathcal{U}}) \times \bar{\Omega} \subset \tilde{\mathcal{V}}.$$

Then, since $\mathcal{B}_{\mathcal{M}}$ and $\mathcal{B}_{\mathbb{R}^n}$ are bases of the corresponding topologies, there exist $\mathcal{W}_k \in \mathcal{B}_{\mathcal{M}}$ and $\Omega_l \in \mathcal{B}_{\mathbb{R}^n}$ such that

$$p \in \mathcal{W}_k, \quad \mathcal{W}_k \subset \bar{\mathcal{U}}, \quad (dx^1(v), \dots, dx^n(v)) \in \Omega_l, \quad \Omega_l \subset \bar{\Omega}.$$

Thus, the set $\tilde{\phi}_{\alpha(k_0)}^{-1}(\phi_{\alpha(k_0)}(\mathcal{W}_k) \times \Omega_l) \subset T\mathcal{M}$ contains (p, v) and satisfies

$$\tilde{\phi}_{\alpha(k_0)}^{-1}(\phi_{\alpha(k_0)}(\mathcal{W}_k) \times \Omega_l) \subset \tilde{\phi}_{\alpha(k_0)}^{-1}(\phi_{\alpha(k_0)}(\bar{\mathcal{U}}) \times \bar{\Omega}) \subset \tilde{\phi}_{\alpha(k_0)}^{-1}(\tilde{\mathcal{V}}) \subset \mathcal{V}.$$

(b) In order to show that $\{(T\mathcal{U}_\alpha, \tilde{\phi}_\alpha)\}_\alpha$ constitutes a smooth atlas on $T\mathcal{M}$, we simply have to verify that the transition maps $\Phi_{\alpha\beta} \doteq \tilde{\phi}_\alpha \circ \tilde{\phi}_\beta^{-1} : \phi_\beta(\mathcal{U}_\beta) \times \mathbb{R}^n \rightarrow \phi_\alpha(\mathcal{U}_\alpha) \times \mathbb{R}^n$ are smooth. Note that the coordinate charts $\tilde{\phi}_\alpha : T\mathcal{U}_\alpha \rightarrow \mathbb{R}^n \times \mathbb{R}^n$ can be reexpressed as follows: For any $p \in \mathcal{M}$ and $v \in T_p\mathcal{M}$,

$$\tilde{\phi}_\alpha(p, v) = (\phi_\alpha(p), d\phi_\alpha|_p(v)) \in \mathbb{R}^n \times \mathbb{R}^n,$$

where $d\phi_\alpha|_p : T_p\mathcal{M} \rightarrow T_{\phi_\alpha(p)}\mathbb{R}^n \simeq \mathbb{R}^n$ is the differential of the map of ϕ_α . Using the formula for the derivative of the composition of two maps, we can therefore deduce that the transition map $\Phi_{\alpha\beta}$ takes the form

$$\Phi_{\alpha\beta}(z, \omega) = (\phi_\alpha \circ \phi_\beta^{-1}(z), d(\phi_\alpha \circ \phi_\beta^{-1})|_z(\omega)).$$

Since $\phi_\alpha \circ \phi_\beta^{-1} : \phi_\beta(\mathcal{U}_\beta) \subset \mathbb{R}^n \rightarrow \phi_\alpha(\mathcal{U}_\alpha) \subset \mathbb{R}^n$ is a C^∞ diffeomorphism (in view of the fact that $\{\mathcal{U}_\alpha, \phi_\alpha\}_\alpha$ is a smooth atlas on \mathcal{M}), we infer that $\Phi_{\alpha\beta}$ is a smooth map.

(c) Let $(\mathcal{U}_\alpha, \phi_\alpha)$ be a coordinate chart on \mathcal{M} and let $(T\mathcal{U}_\alpha, \tilde{\phi}_\alpha)$ be the corresponding coordinate chart on $T\mathcal{M}$ as before. If (x^1, \dots, x^n) are the coordinate functions associated to ϕ_α on \mathcal{U}_α , we will

denote with $(x^1, \dots, x^n; y^1, \dots, y^n)$ the corresponding coordinate functions on $T\mathcal{U}$, so that, for any $(p, v) \in T\mathcal{U}$,

$$x^i((p, v)) = x^i(p) \quad \text{and} \quad y^i((p, v)) = dx^i|_p(v).$$

In any such pair of coordinate systems on \mathcal{M} and $T\mathcal{M}$, the projection map $\pi : T\mathcal{M} \rightarrow \mathcal{M}$ has the expression

$$\pi((x^1, \dots, x^n; y^1, \dots, y^n)) = (x^1, \dots, x^n).$$

Hence, π is a smooth map.

Similarly, if $X \in \Gamma(\mathcal{M})$ has components X^i with respect to the basis coordinate vector fields $\{\frac{\partial}{\partial x^j}\}_{j=1}^n$, the map $X : \mathcal{M} \rightarrow T\mathcal{M}$ defined by $p \rightarrow X_p \in T_p\mathcal{M}$ has the following expression in a pair of coordinate systems as before:

$$X((x^1, \dots, x^n)) = (x^1, \dots, x^n; X^1(x^1, \dots, x^n), \dots, X^n(x^1, \dots, x^n)).$$

Thus, it can be readily verified that the matrix of the differential dX :

$$[dX] = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \\ 0 & 0 & \dots & 1 \\ \partial_1 X^1 & \partial_2 X^1 & \dots & \partial_n X^1 \\ \vdots & & \ddots & \\ \partial_1 X^n & \partial_2 X^n & \dots & \partial_n X^n \end{bmatrix}$$

has full rank, and hence X is an immersion.

3.3 Let X, Y be smooth vector fields on a smooth manifold \mathcal{M} . We define the commutator (or *Lie bracket*) $[X, Y]$ of X and Y to be the linear function $[X, Y] : C^\infty(\mathcal{M}) \rightarrow C^\infty(\mathcal{M})$ defined by

$$[X, Y](f) = X(Y(f)) - Y(X(f)) \quad \text{for all } f \in C^\infty(\mathcal{M}).$$

- Show that $[X, Y]$ is a smooth vector field on \mathcal{M} .
- Show that $[\cdot, \cdot]$ satisfies the following algebraic identities for any $X, Y, Z \in \Gamma(\mathcal{M})$:
 - $[X, Y] = -[Y, X]$ (*anticommutativity*).
 - $[X, aY + bZ] = a[X, Y] + b[X, Z]$ for any constants a, b (\mathbb{R} -*linearity*).
 - $[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0$ (*Jacobi identity*).
- Is $[\cdot, \cdot] : \Gamma(\mathcal{M}) \times \Gamma(\mathcal{M}) \rightarrow \Gamma(\mathcal{M})$ a $(1, 2)$ -tensor field?

Solution. (a) Let us first verify that, for every point $p \in \mathcal{M}$, the functional $[X, Y]_p : C^\infty(\mathcal{M}) \rightarrow \mathbb{R}$, defined by

$$[X, Y]_p(f) = X_p(Y(f)) - Y_p(X(f))$$

is a tangent vector at p . Since $[X, Y]_p$ is obviously a linear functional, it only remains to verify that it satisfies the product rule: For any $f, h \in C^\infty(\mathcal{M})$:

$$\begin{aligned}[X, Y]_p(f \cdot h) &= X_p(Y(f \cdot h)) - Y_p(X(f \cdot h)) \\ &= X_p(Y(f) \cdot h + f \cdot Y(h)) - Y_p(X(f) \cdot h + f \cdot X(h)) \\ &= X_p(Y(f)) \cdot h(p) + Y_p(f) \cdot X_p(h) + X_p(f)Y_p(h) + f(p)X_p(Y(h)) \\ &\quad - Y_p(X(f)) \cdot h(p) - X_p(f) \cdot Y_p(h) - Y_p(f)X_p(h) - f(p)Y_p(X(h)) \\ &= (X_p(Y(f)) - Y_p(X(f))) \cdot h(p) + f(p) \cdot (X_p(Y(h)) - Y_p(X(h))),\end{aligned}$$

where, above, we made use of the fact that the functionals $X, Y : C^\infty(\mathcal{M}) \rightarrow C^\infty(\mathcal{M})$ and $X_p, Y_p : C^\infty(\mathcal{M}) \rightarrow \mathbb{R}$ satisfy the product rule.

In order for $[X, Y]$ to be a *smooth* vector field, we have to show that the assignment $p \rightarrow [X, Y]_p$ is smooth; equivalently, we have to prove that the components of $[X, Y]$ in any local coordinate system (x^1, \dots, x^n) on \mathcal{M} are smooth. We can readily calculate:

$$\begin{aligned}[X, Y]^i &= [X, Y](x^i) \\ &= X(Y(x^i)) - Y(X(x^i)) \\ &= X\left(Y^j \frac{\partial x^j}{\partial x^i}\right) - Y\left(X^j \frac{\partial x^j}{\partial x^i}\right) \\ &= X(Y^i) - Y(X^i) \\ &= X^j \frac{\partial Y^i}{\partial x^j} - Y^j \frac{\partial X^i}{\partial x^j}.\end{aligned}$$

Thus, since the components of X, Y are smooth functions, $[X, Y]$ has smooth components and is, therefore, a smooth vector field.

(b) Identities 1–3 follow easily by using the definition of $[X, Y]$.

(c) The Lie bracket $[\cdot, \cdot]$ is *not* tensorial in its arguments. Assuming, for the sake of contradiction, that it is, then it should be $C^\infty(\mathcal{M})$ -multilinear in its arguments; that is to say, for any $f \in C^\infty(\mathcal{M})$ and any $X, Y \in \Gamma(\mathcal{M})$, we should have

$$[fX, Y] = f[X, Y].$$

However, the above relation is not true: For any $h \in C^\infty(\mathcal{M})$, using the definition of $[\cdot, \cdot]$ we have:

$$\begin{aligned}[fX, Y](h) &= fX(Y(h)) - Y(f(X(h))) \\ &= f\left(X(Y(h)) - X(Y(h))\right) - Y(f)X(h) \\ &= f[X, Y](h) - Y(f)X(h) \\ &\neq f[X, Y](h).\end{aligned}$$

Thus, we reach a contradiction.

3.4 Let (M, g) be a smooth Riemannian manifold.

(a) For any 1-form ω on \mathcal{M} , let us consider the vector field ω^\sharp defined so that, for any $X \in \Gamma(\mathcal{M})$:

$$g(X, \omega^\sharp) \doteq \omega(X).$$

Compute the components of ω^\sharp in any local coordinate chart (x^1, \dots, x^n) .

(b) We will define the *gradient* of a function $f : \mathcal{M} \rightarrow \mathbb{R}$ to be the vector field

$$\nabla f \doteq df^\sharp.$$

Compute the gradient of a function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ in polar coordinates.

(c) We can naturally construct a positive definite and symmetric $(2, 0)$ -tensor \tilde{g} acting as an inner product on the space of 1-forms by the formula

$$\tilde{g}(\omega_1, \omega_2) \doteq g(\omega_1^\sharp, \omega_2^\sharp) \quad \text{for all } \omega_1, \omega_2 \in \Gamma^*(\mathcal{M}).$$

Compute the coefficients \tilde{g}^{ij} of \tilde{g} in any local coordinate system as a function of the coefficients of g .

Solution. (a) In any local coordinate chart (x^1, \dots, x^n) , the definition of ω^\sharp takes the form (for any $X \in \Gamma(\mathcal{M})$):

$$g_{ij} X^i (\omega^\sharp)^j = \omega_i X^i.$$

Thus, using the above formula for $X = \frac{\partial}{\partial x^k}$, $k = 1, \dots, n$, we infer that

$$(\omega^\sharp)^i = g^{ij} \omega_j,$$

where g^{ij} are the components of the *inverse* matrix $[g]^{-1}$ of $[g]$.

(b) From part (a), we know that, in any local coordinate system (x^1, \dots, x^n) on a Riemannian manifold (\mathcal{M}, g) , the gradient of a function $f : \mathcal{M} \rightarrow \mathbb{R}$ takes the form

$$(\nabla f)^i = g^{ij} (df)_j = g^{ij} \frac{\partial f}{\partial x^j}.$$

In polar coordinates (r, θ) on (\mathbb{R}^2, g_E) , since

$$g = (dr)^2 + r^2 (d\theta)^2,$$

the components g^{ij} of $[g]^{-1}$ are

$$g^{rr} = 1, \quad g^{r\theta} = g^{\theta r} = 0, \quad g^{\theta\theta} = r^{-2}.$$

Therefore,

$$(\nabla f)^r = \frac{\partial f}{\partial r}, \quad , \quad (\nabla f)^\theta = \frac{1}{r^2} \frac{\partial f}{\partial \theta}.$$

3.5 Let \mathcal{M}^n be a smooth manifold and $\omega : \Gamma(\mathcal{M}) \rightarrow C^\infty(\mathcal{M})$ be a $C^\infty(\mathcal{M})$ -linear functional. We will show that ω is in fact an 1-form on \mathcal{M} , i.e. if $Y \in \Gamma(\mathcal{M})$ then, for all $p \in \mathcal{M}$, $(\omega(Y))(p)$ depends only on $Y|_p$.

- (a) Explain why it suffices to show that if Y vanishes at p , then $(\omega(Y))(p) = 0$.
- (b) Let \mathcal{U} be an open neighborhood of p covered by a coordinate chart (x^1, \dots, x^n) . Show that there exists an open neighborhood \mathcal{V} of p contained inside \mathcal{U} and smooth vector fields $\{X_i\}_{i=1}^n$ on \mathcal{M} such that $X_i = \frac{\partial}{\partial x^i}$ on \mathcal{V} . (Hint: Use a suitable cut-off function $\psi : \mathcal{M} \rightarrow [0, +\infty)$ which is equal to 1 in small a neighborhood of p .)
- (c) Show that if $Y|_p = 0$, then there exists a finite number of vector fields $\{V_k\}_k$ such that

$$Y = \sum_k f_k V_k,$$

where the functions $f_k \in C^\infty(\mathcal{M})$ satisfy $f_k(p) = 0$. Deduce that $\omega(Y)(p) = 0$.

The same argument should also work for more general $C^\infty(\mathcal{M})$ -multilinear maps $T : \Gamma^*(\mathcal{M}) \times \dots \times \Gamma^*(\mathcal{M}) \times \Gamma(\mathcal{M}) \times \dots \times \Gamma(\mathcal{M}) \rightarrow C^\infty(\mathcal{M})$.

Solution. (a) In order to show that $(\omega(Y))(p)$ depends only on $Y|_p$, we have to show that if $Y_1, Y_2 \in \Gamma(\mathcal{M})$ are such so that $Y_1|_p = Y_2|_p$, then $(\omega(Y_1))(p) = (\omega(Y_2))(p)$. Since ω is linear, if we set $X = Y_1 - Y_2$, the previous sentence is equivalent to the statement that if $X|_p = 0$, then $(\omega(X))(p) = 0$.

(b) Let $\phi : \mathcal{U} \rightarrow \mathbb{R}^n$ be a local coordinate chart defined on a neighborhood \mathcal{U} of p and let (x^1, \dots, x^n) be the associated coordinate functions. Since $\phi(\mathcal{U})$ is an open subset of \mathbb{R}^n , there exists a radius $r > 0$ so that the Euclidean ball $B_{3r}(\phi(p))$ of radius $3r$ centered at $\phi(p)$ is entirely contained in $\phi(\mathcal{U})$. Let $\chi : \mathbb{R}^n \rightarrow \mathbb{R}$ be a smooth function so that

$$\chi \equiv 1 \text{ on } B_r(\phi(p)) \text{ and } \chi \equiv 0 \text{ on } \mathbb{R}^n \setminus B_{2r}(\phi(p)).$$

Let us set $\mathcal{V}_r = \phi^{-1}(B_r(\phi(p)))$, $\mathcal{V}_{2r} = \phi^{-1}(B_{2r}(\phi(p)))$ and $\mathcal{V}_{3r} = \phi^{-1}(B_{3r}(\phi(p)))$ (see Figure 1). Notice that, since ϕ is a homeomorphism, these are open subsets of \mathcal{M} , satisfying

$$p \in \mathcal{V}_r \subset \mathcal{V}_{2r} \subset \mathcal{V}_{3r}.$$

Moreover, since $\text{clos}(B_{2r}(\phi(p)))$ is a compact subset of $\phi(\mathcal{U})$ (since it is strictly contained inside $B_{3r}(\phi(p)) \subset \phi(\mathcal{U})$) and $\phi^{-1} : \phi(\mathcal{U}) \rightarrow \mathcal{U}$ is a homeomorphism, we know that $\text{clos}(B_{2r}(\phi(p)))$ is a compact (and, hence, closed) subset of \mathcal{U} . Since \mathcal{U} is open, this implies in particular that

$$\partial\mathcal{U} \cap \text{clos}(B_{2r}(\phi(p))) = \emptyset. \tag{4}$$

Let us define the function $\psi : \mathcal{M} \rightarrow \mathbb{R}$ by the relation

$$\psi(q) = \begin{cases} \chi \circ \phi(q), & \text{if } q \in \mathcal{U}, \\ 0, & \text{if } q \in \mathcal{M} \setminus \mathcal{U}. \end{cases}$$

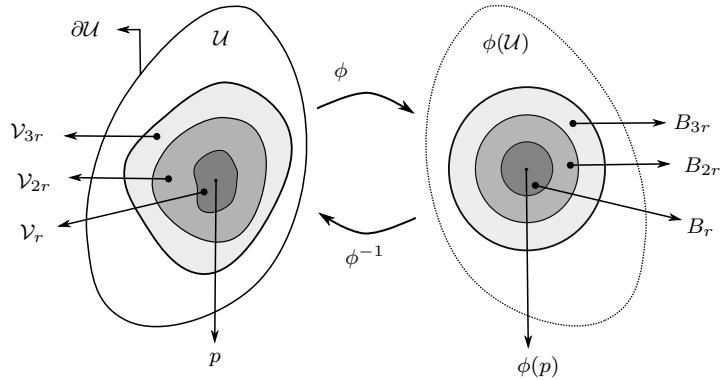


Figure 1: Schematic depiction of the subsets $\mathcal{V}_r, \mathcal{V}_{2r}, \mathcal{V}_{3r} \subset \mathcal{U}$ and $B_r(\phi(p)), B_{2r}(\phi(p)), B_{3r}(\phi(p)) \subset \mathbb{R}^n$. Note that the function ψ is supported in \mathcal{V}_{2r} and $\psi \equiv 1$ on \mathcal{V}_r .

Note that the support of ψ is contained in the set \mathcal{V}_{2r} and $\psi \equiv 1$ on \mathcal{V}_r . We will now show that ψ is a smooth function on \mathcal{M} . The definition of ψ implies that it is automatically smooth in the open sets \mathcal{U} and $\text{int}(\mathcal{M} \setminus \mathcal{U})$; thus, we only have to check its behaviour at $\partial\mathcal{U}$. It will follow that $\psi \in C^\infty(\mathcal{M})$ if the set $\mathcal{Z} = \{q \in \mathcal{M} : \psi(q) = 0\}$ contains an open neighborhood of $\partial\mathcal{U}$. Indeed, since ψ is supported in \mathcal{V}_{2r} , the set \mathcal{Z} contains the open set $\mathcal{W} = \mathcal{M} \setminus \text{clos}(\mathcal{V}_{2r})$ and, in view of (4),

$$\partial\mathcal{U} \subset \mathcal{W}.$$

Having defined the smooth cut-off function $\psi : \mathcal{M} \rightarrow \mathbb{R}$ as above, let us define the vector fields X_i ($i = 1, \dots, n$) on \mathcal{M} as follows:

$$(X_i)|_q = \begin{cases} \psi(q) \frac{\partial}{\partial x^i}, & \text{if } q \in \mathcal{U}, \\ 0, & \text{if } q \in \mathcal{M} \setminus \mathcal{U}. \end{cases}$$

The vector fields X_i are indeed smooth for the same reason that ψ is smooth: They are trivially smooth on \mathcal{U} and $\text{int}(\mathcal{M} \setminus \mathcal{U})$ and, since ψ vanishes on an open neighborhood of $\partial\mathcal{U}$, they are equal to the zero vector field in a neighborhood of $\partial\mathcal{U}$ (and hence they are also smooth at $\partial\mathcal{U}$). Moreover, since $\psi = 1$ on \mathcal{V}_r , we have

$$X_i = \frac{\partial}{\partial x^i} \quad \text{on the neighborhood } \mathcal{V}_r \text{ of } p.$$

(c) Let $Y \in \Gamma(\mathcal{M})$ be such that $Y|_p = 0$. Note that, inside the open neighborhood \mathcal{U} of p covered by the coordinates (x^1, \dots, x^n) , we can easily write Y as a sum of vector fields with coefficients vanishing at p , since

$$Y = Y^i \frac{\partial}{\partial x^i}$$

and $Y^1(p) = \dots = Y^n(p) = 0$ since $Y|_p = 0$. The challenge is to obtain a similar decomposition which is valid on the whole of \mathcal{M} (where $\frac{\partial}{\partial x^i}$ is not well defined). To this end, we will use the cut-off function ψ and the vector fields X_i from part (b) of the exercise.

Let us first decompose (trivially)

$$Y = \psi^2 Y + (1 - \psi^2) Y. \quad (5)$$

If Y^i are the components of the vector field Y in the coordinate system (x^1, \dots, x^n) on \mathcal{U} , then the vector field ψY can be expressed as

$$\psi(q)Y|_q = \psi(q)Y^i(q)\frac{\partial}{\partial x^i} = Y^i(q)X_i|_q \text{ for all } q \in \mathcal{U}.$$

Therefore, we have

$$\psi^2(q)Y|_q = (\psi Y^i)(q) \cdot X_i|_q \text{ for all } q \in \mathcal{U}. \quad (6)$$

Notice that, in the above expression, the vector fields $\psi^2 Y$ and X_i are defined on the whole of the manifold \mathcal{M} , but the functions ψY^i are only defined on \mathcal{U} (covered by the coordinate system (x^1, \dots, x^n)). However, for each $i = 1, \dots, n$, ψY^i vanishes in an open neighborhood of $\partial\mathcal{U}$ and hence (as in the case of ψ) it can be extended as a smooth function $h^i \in C^\infty(\mathcal{M})$ so that

$$h^i(q) = \begin{cases} \psi(q)Y^i(q), & \text{if } q \in \mathcal{U}, 0, & \text{if } q \in \mathcal{M} \setminus \mathcal{U}. \end{cases}$$

Then, since the vector field $\psi^2 Y$ satisfies (6) on \mathcal{U} and vanishes identically on $\mathcal{M} \setminus \mathcal{U}$, we have

$$\psi^2 Y = h^i X_i \quad \text{everywhere on } \mathcal{M}.$$

Returning to (5), we have

$$Y = h^i X_i + (1 - \psi^2) Y.$$

Notice that, on the right hand side, the coefficient of each vector field vanishes at p :

- For $i = 1, \dots, n$, $h^i(p) = Y^i(p) = 0$ since we assumed that $Y|_p = 0$.
- $(1 - \psi^2)(p) = 0$ since $\psi(p) = 1$.

Thus, we succeeded to write

$$Y = \sum_k f_k V_k$$

for $f_k \in C^\infty(\mathcal{M})$ and $V_k \in \Gamma(\mathcal{M})$ such that $f_k(p) = 0$.

In view of our assumption that $\omega(\cdot)$ is $C^\infty(\mathcal{M})$ in its argument, we therefore have:

$$(\omega(Y))(p) = \left(\omega \left(\sum_k f_k V_k \right) \right)(p) = \sum_k f_k(p) (\omega(V_k))(p) = 0.$$